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. 

. 

OF NODEL 

T e a t s  of ths airplane modd r e p o r t d  herein included investiga- 
S o n s  t o  dete,miac: the I.ongi.tudina1 s t a b i l i t y  and control, and the 
e f fec ts  of vari_ous constituent prt3 o r  t he i r  modification on 
longitudinal s tab4l i ty  and control, c r l t i c a l  speed, and dist r ibut ion 
of wirg l a d .  The changes j.n the model, made i n  attorny%s .to improve 
longi-kudinal control and t o  increase c r i t i c a l  speed, were addition 
of auxi l l ia ry  cc-ntroi f laps  on th? lower surface of the wing, 
revision of windshield, increase i n  dimemions ol" outboarb nacelles, 
aid a l te ra t ion  i n  prof i le  of wing leading edge. 
landbg f laps  a srimll amomt was a l so  t r i e d  a? a means for improving 
tlne longjt.udina1 control. 

Ger"l.ection of the 

ms. r e su l t s  of the t e s t s  indicated: 

1. kdditlonal lii't for recovery Proin high-speed dives may be 
"ob5ained e i ther  by deflectip& the landing f laps  about 10' or by 
adding auxi l l ia ry  coiitmA Tlaps. 

2. 
of the model. 

None of thi3 nodificationa tes ted increased the c r i t i c a l  speed 

3. I n  order t o  I'ly leve l  a t  aqy a l t i t u d e  above 32,000 feet ,  
the c r i t i c a l  speed or" the airplane w i l l  be exceedecl. 

13TTRODUCTION 

Tests of a 0.075-scale model oI" a four-engine bomber airplane 
were cari-ied out i n  the Ages 16-foot high-speed wind tunnel a t  the 
rsquest of thc Ai-my A i r  Forces. 
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The purposes of the tssts wel'e: 

1. To investigate th2 1ongitudSnal s t a b i l i t g  and proposed 
methods for inproving loagi tixiiqal conwol at; superr- 
c r i t i c a l  speeds 

2. To f ind  m a - i o  of increantng the c r i t i c a l  speed 

3. To ob.bain data shoi&~g d5stribution of loads on the t a i l  
and wing 

This report  sham the r e su l t s  of force t e s t s ,  pressure- 
dietribution mnasumxents, azd wake acrveys. 

Pigvre 1 i s  a three-view Crawiw of the model i n  i t s  standard 
form. %-_e pixi@ dinenslons and amas were as follows: 

Model scale = 0.G75 full scale  
Wing area = 9.65 square f e e t  
Wirg span = 10.59 f e e t  
Mgan aerodpm-ic chord = 0.965 f e e t  
Aspcct r a t i o  = 11.62 
mver rat:io = 2.28 
Ybil 1cngi;h = 3.859 f e e t  
Ta i l  area (incluCing elevators)= 1,896 square f e e t  

The coordinates of the wing section a r e  given in f igure  2. The 
thickness r a t i o  varied from 22 percent a t  the root t o  9 percent at  
the t i p .  
wing, as shown i n  figure 3. 
fron 20 percent chcrd to the traXi;-e ed.ge. 
cliord, the mean camber l i n e  curved upward. 
12 percmt.  

Presmre or i f ices  were provided a t  ten  statims on the 
The s t ab i l i ze r  section w a s  symmetrical 

Forward of 20 psrcent 
"lie thicknoss r a t i o  w m  

I n  addltion t o  tests of the model i n  i t s  standard f o m  (fig, 1) 
t e s t a  were mde t o  dst,emiiic th-r. ePfcc ts  of the following modifica- 
t i o m  : 

1. Add-ition of auxi l iary control f l aps  on the lower surface of 
t.he w i q  (figs.  4 to 6) 

2. Revision 0-? wind.3hisld (fig.  7)  . 
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. 

3. Increase i n  dimensions of outboard nacelles with and without 
extensions o? the w i n g  trailing edge (fig. 8) 

4. Alterations i n  prof i le  of , w i n g  leading edge 03 partial or 
en t i re  span (figs. 9 'and 10) 

The zo&el FTEO mounted on a three-strut support syst9m as shown 
i n  f igure  11. 

The forces vcre oleaswed by au tomtfc  balancing and recording 
scales. 
manoIneters and were recorded Thotographically. 
wake xomcntum wx-3 mde by meam of the rakc of total-pressure tubes 
shown i n  figure 12. 

The s t a t i c  pressures were measured on multiple-tube 
Maavuroments of 

SYMBOLS 

'Rie following s;mbols are used i n  t h i s  report: 

g 

v volocity, fo& per second 

a p l n i c  presswe ($~2), pounds per square foot  

P mass density, slugs per cubic f co t  

S wing area, square f e e t  

M.A.C. mean aerodymmic chord,. f e e t  

a- corrected angle of .a t tack 

Da angl+of-attack correction due t o  tunnel-wall effects  and 
flow inclina-tion 

l i f t  coefficient (F) 
measured dmg \ 

b a g  coefficient (-- + ACD j 
c D f p O S S  \ qs 1 

drag-coefficient correction due t o  twael-wall e f fec ts  and 
flow incliiiation 

*CD 

C Q / ~  pitching-moment coefficient about quarter point of the mean 

(pitching moment 
( qS M.A.C. 

aerodynamic chorc? 
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AC, pitching-moment-coeff icien$ correction due t o  tmmel--wall 
e f fec ts  

pressure 

(total  pressure i n  f r e e  s t r z a m  -. t o t a l  pressure i n  wake) 

pressure - ].oca1 s t a t i c  presswe) - 
9 

S 

LiR,/q -1 - r--- 9 
f free-stream velocity M Mach nunber ( veloci ty  of sound 

EES'JLTS AND DISCUSSIO!J 

---I Correction of data.- The h t a  were obtzined f o r  a speed range 
corresponding t o  Mach nm13erB froin 0.22 t o  0.775, and a t  angles of 
a t tack  from --40 t o  loo, 
w a l l  effects  and f l o w  inclination. 
the =in intermit wasl in  coqa rz t ive  values, 
t ions h-ere computed by the msthod outlined i n  reference 1. The 
values cf the flow incl inat ion were deternined by coqa r ing  the 
r e su l t s  of t e s t s  with the model mozurted inverted and upright and 
were 8 s  follows: 

Correctiono were applied for the  tumel- 
"aces were not evaluated because 

The t u n n e l 4 1  came-- c 

c 

! Flm incl inat ion 
Mach Ember 

Radians - Degrees 

0.22 t o  0.60 3.0027 0.15 
.003g .22 
,0054 31 

725 
.75 ,0222 1.27 

1.61 

The t o t a l  corrections applied were QS follows: 

0,353 C~ + ( f l o w  incl inat ion i n  degrees) 

0.0061.6 cL + cL (flow incl inat ion i n  radians) 2 
A C ~  = 

= 0.0063 CL 

* 

C 
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Lox-gitugnal s t a b i l i t y  alld,coiytrol.- The variation of drag 
coefficient,  a q l e  of attack, and qitchingaoment coefficient with 
the lii't ccefficient i s  shown i n  figures 13  and 14. 
for the wicg, nacelles, and fuselage; f igUY'3  1 4  i s  f o r  the complete 
model, w i n g ,  nacelles, fuselage, and tail.  Figure 15 SLOWS the 
var ia t lon of the pitchlng-moment coefficient with Mach number a t  
constant values el" the lift cosfficient f o r  the complete model. 
data provide a basis for the study of the longitudinal s t a b i l i t y  and 
control of the Eti_rplane. 

Figure 13 is 

These 

The essent ia l  rcquirenent f o r  recovery from dives i s  t o  obtain 
enough l i f t  t o  change the  f l i g h t  path. 
derived from increasi:: the angle of a t tack by deflecting the 
elevators. However, i f  the elevators become d i f f i c u l t  t o  move, 
umtable,  o r  ineffective, it w i l l  be extremely d i f f i cu l t ,  if not 
inpossible, t o  recover from a dive by t h i s  means. I n  such cases 
it would be aavantageous i f  the desired lift could be obtained i n  
some other way. Tests were nade with the lm-diIzg f laps  deflected 
10' t o  ascer ta in  t h e i r  u t i l i t y  f o r  t h i s  pmpose. Tie r e su l t s  a r e  
shown i n  figures 16 t o  18, 

Ordinarily, such l i f t  i s  

Ftgure 16 shows that, f o r  constant l i f t  coefPicient, landing 
f l a p  deflection increasea the >itching-moment coefficient.  
vould have the e f fec t  of shiftiirg' the pitchip;tnioment curves of 

axis i n  the posit ive direction an amount f igure 1 4  along the 

equal t o  the inmexent, and thcs of increasing the l i f t  coefficient 
corresponding t o  zero pitchlng-moment coefficient.  
then, that if the airplane were i n i t i a l l y  balanced 
the control surfaces remained fixed, it would be balanced a t  8 

greater  lift coefficient a f t e r  the flaps were deflected. 
exhnple, a t  a Mach number of 0.75 the model balances a t  a l i f t  
coefficient of 0.37 with the flap3 retracted and at 0.58 with the 
f laps  deflected 100, an increase of 0.21. 
small landing f l ap  deflections w i l l  r e s u l t  i n  extra l i f t  needed f o r  
recovery from dives. 

This 

%,* 
It can-be seen 
(C, = 0) and i f  

For 

Thus it appears t ha t  

Tests were a l so  m d s  of auxi l iary control fla?s, having mr ious  
chords, spans, chordwise lccations, 2nd deflections, t o  determine 
t h e i r  usei"u1nes;J for recovery from dives. 
i n  i igures  19 t o  33. The effects of varying the chord and chord- 
wise location arc sholm i n  figures 19 t o  21 f o r  f laps  extending 
from the fuselage Lo the inboard nacelle and f o r  a deflection of 
45'. It i s  seen Prom figure 19 t h a t  ?or the small tapered f laps  
the foiward. posit ion produces the greatest  increment of pitching- 
morfient coefficient for smll lilt coefficients and f o r  mch  numbers 

The resu l t s  a r e  shown 
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grea ter  t,han &?proximately 0.6, 
the increment due -to these f l aps  becomes less, esyecia11:r a t  low 
i%ch rmdx-s. 
the fla??s 8 re  most JLkely t o  be used, the forward posltAon of the 
s r i ~ l l  taper-ed f l a p  i s  the more effsct ive.  
f o r  -ihe interrredlate posit ion the la rger  chord flaps a& tha most 
effect ive,  approxi:natdLy i n  proportrion t o  the  chor0. It does not 
necessarily follow tliat t h i s  re la t ionship w i l l  hold Tor a t i l l  l a rger  
ckiord-s . 

With increasing I f f  t coeff ic ient ,  

Nevertheless, til the range of Mach nm-bers i n  which 

Figure 19 a l s o  shows that 

, 

Figures 22 t o  24(b) consis t  0: e. f'amily of cirv8s f o r  two f l a p s  
which extend out t o  60 pei-cent of the wing span. 
f igure  22 show, as do those of ; i s r e  19, t imt i n  general the forward 
f l a p  location i s  be t t e r  t'ilaa tt?e otherz. 
and 25 shows tha t  increasing tho :l.ap 6po.n from 60 percent of the 
wing spen 'io 
c ien t  l o r  bala-ice. 
which preosnts the charac te r i s t ics  of the model with three auxi l ia ry  
f l a p s  of varying smr. It i s  seen t h a t  the optimum. f l a p  span is 
about 60 -percent 0: the w h g  E ~ B P ,  md t h a t  i rarease of the f l a p  
span beyond th i3  does not provide cnough addi t ional  l i f t  t o  warrant 
it. 

Ths curves of 

A comprtson of f igures  22 

p r c e n t  dms no-5 appmciably incroase the l i f t  coeffi- 
This comparlsoii i o  sliown more c l ea r ly  by f igure  28, 

9 

" 

Tne ef fec ts  of varjdrg $he flap deflect lon a r e  slzo-wn by  f igures  31 
A deflection of 22.50 i s  seen t o  be c?eti-imer-tal i n  a l l  cases; t o  33. 

whereas a def lect ion of 45' i s  beneficial .  
f o r  the small spa f laps ,  i t  s e m s  reamnable t o  m3me  t h a t  
3iEj.lar resu l t s  would be obtained with la rger  s p n  f laps .  

Although these deta a r e  

SizrvejTe of the walrc i n  the region of the t a i l  (sse stat ions,  
-fig,  3) were mal ( :  f o r  che wing with no auxi l inry f laps ,  and f o r  the 
v f n g  w i t h  the small taper< d 0.ld s p n  f l a p  a t  the rear spm (fig. 5) 
During These surveys, the tm-rc% end s ight ing domsz ( f ig .  11) were 
i n  place, but it i s  believed t h a t  t h e i r  e f f ec t  on the wak6 W a s  
negligible.  "lie r e su l t s  of the swvcys are shown i n  f igures  34 and 
35 

Cr i t i ca l  bbch nunbey=- The pressum dis t r ibu t ion  over the wing 
is presented i n  figvres 36(a) -Lo 36(g)  an& 37(a) t o  37(g) for the 
nacelles-off end nacelles-on conditioas, respectively.  I n  these 
I"igures, wherLver t h e  peak-p-esmrs coef f ic ien t  exceeded the 
c r i t i c a l  mlue ,  the curve from %ha+, peak value t o  the next b l u e  
which vas less than the c r i t i c a l  w a s  draml with a dotted l i n e .  
This proceitum was followed 5 ~ ? c n u ~ e  the exact Toint or" recovery, 
which i B usually abrupt when passing from supersonic t o  subsonic 
l o c a l  s p s e b ,  i s  not knam. 
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Figwes  38 and 39 show, for  constant lift coefficients,  the 
maximum pressure coefficients f c r  the upper surface cf the w i n g  as 
functions o? Mach number. Flgura $3 is  for s t a t ion  35.64 on the 
bare w i n g ,  and figure 39 f o r  stat:-on 25.45 when the nacelles a r e  
rnoxrrbed. With the nacelles on, the maximum loca l  veloci t ies  
measued were a t  s-tation 25.45. IIowevei-, f o r  %he mcelles-oLnf 
c o d i t i o n ,  %he data ?or s ta t ion  25.45 indicated. t ha t  the maximum 
loca l  veloclty was a: a chordwise location beyond the pressure 
orif  i ces  provided. Conacquently, fo r  nacellos ofi', the datz. of 
statl ion 35.64 were wed; it being assumed +,hat since the stat5ons 
were not far apart, %here would be, no s ignif icant  difforsnce 
between them i n  t h e  chorCwj.Ee dis t r ibut ion and magnitude of the 
loca l  veloci t ies  on the bare wing. Figure 40 shows the variation 
with lift coefficient .of +he c r i t i c a l  Mach number f o r  these .two 

this f3gur.e tha t  for l i f t  coefficients. 
1 h c h  number a t  the wiq-nacelle 

the nacelles. However, it m s  fomd that 
the nacelles had an insignif icar t  e f fec t  on the local  veloci t ies  
a t  s t a t ion  35.64. 
a whole would be unchanged by the nacelles for l i T t  coefficients 
l e s s  t h m  0.44. l o r  p a a t o r  lift coefficients,  the c r i t i c a l  lhch 
number 0.r' the wing was decre3"sed by the additlon of the nacelles. 
It must be remembered that the c r i t i c a l  Mach iimber m y  have been 
lover a t  sone point on the model where the gressures were not 
msasured. Xeferring again t o  figure 40 it i s  seen that ,  i n  order 
t o  f l y  leve l  a t  any speed whatsower a t  a l t i tudes  above approxi- 
mately 32,000 Test w i  th a wing lopding of 61.25 pou-ncis per square 
foot, the e i t i c a l  opce$ of me alrplane w i l l  be exceeded. 

Consequmtly, the c r i t i c a l  speed of the wing 3s 

, f o r  w i n g  e ta t ion  35.64, that the 
s continued t o  increase w i t h  Mach 

a1 values had been exceeded by 0.3 or 
more. and u-xtil the correspcnding criCYical Mach nuibers had been 
exceeded by 0.06 or more. 
IiicreaseC, the  pressure coefficients decreased. I n  t h i s  range, 
the pressure coefficients corrospond approximately t o  those 
derived for a local  s t a t i c  pressure of b5 percent of the 
atmospheric pressure. A cmr-3 f o r  such pressure coefficients i s  
given. The pressureo at s ta t ion  25.4.5 (fig.  33), however, 
raachsd mlucs as l o w  as 35 pcrcent of atnospheric pressure, but 
g e m r a l  agreement w a s  lacking. 

A s  t he  Mach number w a s  fur ther  

Figure 41 preser?ts the pressuredis t r ibu t ion  data f o r  the 
lsadixg-edgc portion of the upper surface of the wing arid f o r  
various cooling-flap deflections. The dcta a r e  Given f o r  one 
s t a t i o n  only (outboard juncture of' inboard nacelle with w i n g )  

. 
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as a l l  the  wing-nacelle 
I n  general, opening the 
cients  arid consequent1.y 
f i r s t  2' of openi34 hmi 

junctures showed similar character is t ics .  
cooling f laps  decrc-asc-d. the prassure coeffi- 
increased the c r i t i c a l  Mach nu;nber. ~ The 
the greatest  e f fec t  and the effectiveness 

v 

decreased f o r  larger  openings. 
c ient  w a s  probably due to  the fo rmt ion  of a region of sewra t ion  
next t o  the nacelles. 

This reduction i n  pressure coeffi- 

The effect  of the cooling f laps  on the minimum d.ra8 coeffi- 
c ient  i s  shown i n  f i g w e  42. A t  subcrlticctl Mach numbers, the 
&rag coefficient increasod with f l a p  opening, being iioubled a t  
20'. 
for a f l ap  opening of approximite1,v 2O. 
the drag was t h e  szme f o r  openings of 0' and of loo, but w a s  
sml . le r  f o r  lntermediate positions. 
dmg was presumably decreased because of the greater c r i t i c a l  
speeds, which would result ?ram lowering the maximum pressure 
coefficients,  es sham i n  f igure 41. 

A t  higher speeDs, howevela, the drag coef'ficient was minimum 
A t  a Vach number of 0.775 

A t  these higher speeds the 

Pre3sme-dfstributian measurements were mads QXI a revised 
windshield -to detamine i t s  c r i t i c a l  Mach number. The results, 
as presented i n  f igure 4.3, show tbt -the c r i t i c a l  Mach number of 
t h i s  windshicld i s  greater than that of the wing and nacelles. 
Force measurements shmed no appreciable e f fec t  from the revised 
windshield. The data a r e  therefore omitted. 

The Arm7 A i r  Forces requested tha t  t e s t s  be mdc with larger  
outboard nacelles which a r e  intcrcha.lgeable with the inboard 
nacelles. I n  conjuncticn with these t e s t s ,  the e f fec t  of a wing 
trailing-edge extension s i m i l a r  t o  t ha t  betwoen the fuselage and 
inboard nacelle3 was detsrmine&. 
figures 44 t o  46(c). 
the stnndard nacelles, decreaeed the pitchingdoment coeff ic ient  
for equal li*t coefficients by approximately 0.01, and decreased 
the li?t coefficient f o r  equal angles of a t tack  by approximately 
0.02, 
pitchiwaoment coefficient vas essent ia l ly  the same as with the 
small nacelles and the lift c o d f i c i e n t  w a s  increased. The addition 
of the nacelles, both with and without the trailing-edge extensions, 
changed the drag coef;icient negligibly. 
assumed that the c r j t i c a l  Mach nunbcr was prac t ica l ly  unchanged-. 

The r e su l t s  a r e  presented i n  
The large outboard nacelles, as compared with 

However, when the trail ing-edge extensions were added, the 

IC m y  therefore be 

I n  an attempt t o  increase the c r i t i c a l  Mach number and decrease 
the drag E t  high a x l e s  of attack, th3 wing leading edge w a s  
nodified, as shown i n  figures 9 and 10. 
i n  figures 47 t o  54. 'The pitchingaoment da+,a, presented i n  

Resu-lts of t e s t s  a r e  shoim c 
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Pigiu-e 47, 5.nddcate that no advantage i s  t o  be gained f r o p  any of these 
modifications, s i m e  the Mach number a t  which the pitching%oment 
coefficient b5gins t o  docrc.:aso ?c i n  no case grsater.  
s tandpoht  of' drag, shown i n  :figureh 48(a) t o  48(d), the ex t rme  
leading- sQe droo-p w a y  def ini te ly  hetrimsntal througho1i.t the Each 
number range and nOne of the other leading-edge mod5fications 
Oecree.3eO -the drzg except a t  Mach nmbers abova the c r i t i c a l ,  Figures 
49 t o  54 show tn :ca l  pres..xre d?-stributions for Eeveral angles of 
a t tack  ar,d Mach number:;. From these &rb.ta i t  is  seen tha t  any increase 
of cr i t ical-  Mach number a t  hlgh angles of a t tack  which might bs galned 
13  so small as t o  ?IC v,rlim?ortar,t; whereas the c r i t i c a l  Yach nuinber a t  
modemte ai-igles of attack would d te in i te ly  3 e  Decreased. ' 

r'rom the 

Loads on su-rfacea.- Owing t o  the rast that  pressure o r i f i ce s  
were not povided over th3 rear por.ti.on OB the wing a t  eaough wing 
sLLtiona, I t  vas not 2ossiblo t o  de-tmmine accurately the w i n g  load 
distribution. Eovever, a study of figures 36(a) t o  36(g) and 37(a), 
t o  37 (g  j does reveal sone !x?ormatiori regardirs '  the var ia t ion of tho 
load distribu%loi wifvh Mach nvmbm. 

_II_- 

A s  th.= Ewh mmber incrmse,s, the ving begins t o  l o s e  l i f t  over 
the  inboard portion f i r s t .  Inasmuch as the inboard sec t iom of the 
wing Ere the thicker,  it, is  t o  be e q e z t e d  tha t  the conpresslbil i ty 
e f fec ts  would occur on these portions of ths  ving f i r s t ,  

Likewise a conprison of f igures  $(a) and 37 (a), for example, 
shows the effect  of the nacelles on the loca l  vel.ocities. me 
mcellss increased t!ie local  veloci t ies  over %he forward portion of the  
u p e r  surface o? the w i n g ,  but decreased them over the remaining por- 
t ion.  On the lower sur:ace the nacelles cau.se0 increased loca l  

bution as they did on thc upper surface. 
peak veloci t ies  on the upper surface were actual ly  reCuced by the 
presence of the i1~~ce1I.e~. 
tho maximum local veloci t ies  became; pronounced and soon exceeded 
those f o r  t I i e . v k q  wj.thout nccellos. 
by thc; reduction of the c r i t i c a l  Mach number. 
i,; Cofinad! as the Trcc-strcm Each ii~ni<oer a t  which tho mximm local 
velocity over the wing i s  eqwl t o  the local velocity of somd0 

"veloci t ies ,  but d i d  not chargc t:ie chcrscter of the yressure d i s t r i -  
A t  low angles of a t tack  the 

With increasing angle of attack, however, 

The effect  i s  Eeen i n  Q u r e  40 
Cri t ica l  Mach ixmber 

c OhTCLUSI9~S 

The r e su l t s  of the te3ts' indicate tha t :  

1. Lowcring the 1andi:ig f laps  16 w i l l  provid-e additiorlal l i f t  0 

f o r  recovery from high-syeed dives. 
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2. Auxiliary coritrol f l a p s  w j l l  provide additional lift. The 
optimum arrangement appears to consist of flap:, on the lower surface 
at the foxward spar of ths wing, heving a span 60 percent of the 
win6 span ar,d a deflection of 430. 

3. Addition of the nacelles lowers the critical speed f o r  lift 
coeff i_cicn-t;a greater than 0.44. 

4.  he crttical s p e d  t f  the airplane will 5e exceedcd in 
order to fly l eve l  a t  an;. snoed whatsoever above approximately 
32,000 feet al-titub witli a wing loading of 61.25 pounds per square 
foot . 

5. Opening the cooling f l a p  dccreesec: the pressure pa4s at 
the wing-nacel.1~ junctures. 
increase the low-speed drag cosfficient, and zctually decrease the 
drag at high &cl; nmnberj. 

0-flectfons u.? to 2' do not materially 

6. Thc critical Mach nurber of the revised windshleld? is 
greator %ban that of the . w i n g  acd nacelles. 

7 .  The large outboard nccslles in place of the stondard 
outboard m c e l l o ~  mlko no appreciable diffurencs in thc ch%r%cter-- 
istics of the  model. 

8. me modified willg leading edges woilld not increase the 
critical Mach nmbcr aFpreciably at high angles of attack, while et 
l o w  angles of attack they would docrcase t ho  critlcal Mach number. 

Arms Aeronautical Laboratory, - National AdTfisory Commi t t e o  for Aeronautics, 
Moff ett Field, Calif. 

1. Silverstcin, Ab, and Whitc, Jamea A , :  Wind-9innel Interference 
with Particular Reference to Off-Center Positions of the Wing 
and t o  thc Dowmash et the mil .  EACA Cep. No. 5k7, 1935. 
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